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Introduction

Mediation

• outcome variable Y .

• exposure variable X .

• mediator variable M. X

M

Y

• The purpose is to decompose the causal effect of X on Y into two
parts

• The effect that passes through the mediator M ( indirect effect)
• The effect that does not ( direct effect).

Motivation of my works

• Practical issues in psychology.

• Propose alternative statistical solutions:  Bayesian framework
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Gaussian model: case of correlation

• The most widely model to
evaluate the effect of X on Y is
the linear regression:

Y = ψ0+ψX+ε, ε ∼ N (0, σ2)

• ψ measures the association
between X and Y .

X

M

Y

a1

b2

b1

In presence of the mediator M,

• the linear model is of the form:

Y = b0 + b1M + b2X + ε2

M = a0 + a1X + ε1

where εi ∼ N (0, σ2
i ), i = 1, 2.

=⇒ Y = b0 + b1a0 + (a1b1 + b2)X+

a1ε1 + ε2

• The total effect is
ψ = b2︸︷︷︸

Direct

+ a1b1︸︷︷︸
Indirect

.
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Mediation with binary outcome

• outcome variable Y ∈ {0, 1}.
• exposure variable X .

• mediator variable M ∈M ⊂ R.
X

M

Y

a1

b2

b1


E(Y |X ,M) =

1

1 + e−(b0+b1M+b2X )

M = a0 + a1X + ε, ε ∼ N (0, σ2I )

Problem: Decomposition of the effect of X on Y in the logistic case.
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Remark

The decomposition of the total effect is not valid for logistic mediation
model.

• ψ measures the total effet

E(Y |X ) =
1

1 + e−(ψ0+ψX )
(∗)

• b2 measures the direct effect

E(Y |X ,M) =
1

1 + e−(b0+b1M+b2X )
(∗∗)

But
ψ 6= b2 + a1b1

If we replace M by M = a0 + a1X + ε in (**), we do not obtain (*)
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Causal Effect

• We want to define the causal effect of the exposure X ∈ {0, 1} on
the outcome Y .

• Yx is the potential outcome if X = x , x ∈ {0, 1}.
• The average causal effect of X on Y is

ACE = E(Y1 − Y0)

Theorem

Assume that

1 consistency assumption

if X = x , then Yx = Y ,

2 ignorability assumption,

Yx ⊥⊥ X for x ∈ {0, 1},

We have
ACE = E(Y |X = 1)− E(Y |X = 0)
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In presence of a mediator Pearl (2001)

1 Direct effect is the difference between the potential outcomes Y1

and Y0 but imagining that the mediator is blocked at its value Mx

1 Pure Natural Direct Effect when x = 0,

NDE(0) = E(Y1,M0 − Y0,M0 )

2 Total Natural Direct Effect, when x = 1,

NDE(1) = E(Y1,M1 − Y0,M1 )

2 Indirect effect is the difference between the potential outcome Yx

but imagining that the mediator corresponds to M1 and to M0

1 Pure Natural Indirect Effect when x = 0,

NIE(0) = E(Y0,M1 − Y0,M0 )

2 Total Natural Indirect Effect, when x = 1,

NIE(1) = E(Y1,M1 − Y1,M0 )

A simple calculation provides

ACE = PNDE + TNIE = PNIE + TNDE
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Identifiability of NDE and NIE

• The potential outcome Yx,Mx∗ is never observed since x 6= x∗.

• Additional assumptions are required to obtain the identifiability of
the effects (see for instance Pearl, 2001; Imai et al., 2010).

• Under these, we have, for x , x∗ ∈ {0, 1},

E(Yx,,Mx∗ ) =

∫ +∞

−∞
E(Y |X = x ,M = m)fM|X=x∗(m)dm

 

NDE(x) =

∫ [
E(Y |X = 1,M = m)− E(Y |X = 0,M = m)

]
dPM|X=x (m)

NIE(x) =

∫
E(Y |X = x,M = m)dPM|X=1(m)−

∫
E(Y |X = x,M = m)dPM|X=0(m)

Gaussian example:

NDE (0) = NDE (1) = b2, NIE (0) = NIE (1) = a1b1.
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Bayesian inference of effects NDE(x) et NIE(x)


M = a0 + a1X + ε α = (a0, a1)

E(Y |X ,M) =
1

1 + e−(b0+b1M+b2X )
β = (b0, b1, b2)

• Likelihood function :
f (Y ,M|α, β, σ2,X ) = Φ1(Y |β,M,X )Φ2(M|α, σ2,X )

where

Φ1(Y |β,M,X ) =
exp(Y (b0 + b1M + b2X ))

1 + exp(b0 + b1M + B2X )

Φ2 Gaussian N (a0 + a1X , σ
2In)

• prior distribution of α, β, σ2.
• parameters of Interest:

NDEθ(x) =
1

σ
√

2π

∫ [
1

1 + e−(β0+β1m+β2)
−

1

1 + e−(β0+β1m)

]
e
− 1

2σ2 (m−α0−α1x)2

dm

NIEθ(x) =
1

σ
√

2π

∫
1

1 + e−(β0+β1m+β2x)

[
e
− 1

2σ2 (m−α0−α1)2

− e
− 1

2σ2 (m−α0)2
]

dm.

 Non-explicit function of θ

J-M Galharret Mediation with binary outcome September 13, 2021 9 / 24



Construction of the prior

We propose strategies with different degrees of information :

• a weakly G-prior introduced by Zellner (1971).

• an informative prior resulting from Launay et al. (2015)
transfer Learning

linear regression Logistic regression
σ2 α β

G-prior weakly info. 1
σ21R+

G−prior
Informative info. Launay et al. (2015)
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G -priors

• For linear regression model (Zellner, 1971)

Y = Xβ + ε, ε ∼ N (0, σ2In),X = [1,X1, ...,Xp].

G -prior is define as follows{
β|σ2,X ∼ Np+1

(
β̃, gσ2(X′X)−1

)
π(σ2|X) ∝ σ−2

 The choice β̃ = 0 and g = n gives to prior information the same
weight as an observation.

• Generalisation to logistic regression (Marin and Robert, 2007)

β|X ∼ Np+1

(
β̃, g(X′WX)−1

)
, W = diag(pi (1− pi )).

 The choice β̃ = 0 and pi = 1/2 gives a weak information to the prior.
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G -priors and mediation model

• Decomposition of the joint
distribution :

f (M,Y , α, σ2
, β|X ) =Φ1(Y |β, σ2

Y ,X ,M)π(β, σ2
Y |X ,M)

Φ2(M|α, σ2
M ,X )π(α, σ2|X ).

• π(β|X ,M) G−prior logistic regression
E(Y |X ,M) = 1

1+e−(b0+b1M+b2X )

• π(α, σ2|X ) G−prior linear regression
M = a0 + a1X + εM .

X

α

β

σ2
M

σ2
Y

M

Y

Remark on the Gaussian mediation model

• Galharret and Philippe (2021) use the same strategy for the
Gaussian mediation model.

• Nuijten et al. (2015) address this problem as two independent
Gaussian regression models.
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Testing direct and indirect effects

Proposition

In the mediation model we have:

NDE(0) = 0⇐⇒ NDE(1) = 0⇐⇒ b2 = 0

NIE(0) = 0⇐⇒ NIE(1) = 0⇐⇒ a1b1 = 0

Test for direct effect (b2 = 0) the likelihood ratio test

Test for indirect effect (a1b1 = 0) bootstrap is used to approximate
confidence interval for a1b1  the performances are not very good for
small samples.
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Alternative

Test for the indirect effect :

H0 : NIEθ(x) = 0 against H1 : NIEθ(x) 6= 0.

Decision rule : let Iα be the credible interval of NIEθ(x)

P(NIEθ(x) ∈ Iα|Y ,M) = 1− α

0 6∈ Iα  The absence of indirect effect is rejected

Remark

• According to Berstein von Mises theorem, for all θ ∈ Θ such as
a1b1 = 0, the frequentist probability satisfies

Pθ(0 ∈ Iα)→ α
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Numerical results for indirect effect

a1b1 = 0 gives the empirical level
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Informative model M1 (Launay et al., 2015)

We assume that

1 A historical data are available Dh and

2 A Bayesian analysis has been done on Dh

mh =E (αh, βh|Dh)

Σh =Var (αh, βh|Dh)

Application: longitudinal study: historical data come from the previous
time step.
Assumption: Only small changes in parameters between the two studies.
Prior distribution of (α, β) :

(α, β) ∼N5(Kmh, gΣh)

where K =

 k1

. . .

kJ

 et k1, ..., kJ are i.i.d. kj ∼ N (1, τ 2).

 g et τ 2 hyperparameters of the model.
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Illustration

Historical data : nh = 100, αh = (1,−2) et βh = (−0.5, 1.5, 1).

data : We simulate samples with the following parameters

α β NDE(0) NIE(1)
Case 1 (1,−2) (−0.5, 1, 1.5) 0.24 −0.35
Case 2 (1,−1) (−1, 2, 0.5) 0.07 −0.29
Case 3 (1, 1) (1, 1,−1) −0.15 0.15
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Comparison of priors on NDE(0) and NIE(1). case 1
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Numerical results

NDE(0)=PNDE NIE(1)=TNIE
N model bias RMSE coverage length bias RMSE coverage length

CASE 1: Time-invariant parameters
30 info 0.01 0.11 0.97 0.48 0.01 0.11 0.96 0.43
30 G-prior -0.02 0.16 0.96 0.63 0.04 0.12 0.95 0.48
50 info 0.00 0.09 0.96 0.40 0.01 0.08 0.96 0.34
50 G-prior -0.01 0.12 0.95 0.49 0.02 0.09 0.96 0.37

100 info 0.00 0.07 0.96 0.30 0.01 0.06 0.96 0.24
100 G-prior 0.00 0.07 0.96 0.30 0.01 0.06 0.96 0.24

CASE 2: Time-varying parameters with invariance of the sign of the effects
30 info 0.03 0.09 0.97 0.39 0.02 0.10 0.96 0.40
30 G-prior 0.00 0.13 0.93 0.50 0.02 0.11 0.96 0.43
50 info 0.02 0.07 0.97 0.32 0.01 0.08 0.96 0.33
50 G-prior 0.00 0.10 0.94 0.40 0.02 0.08 0.96 0.34

100 info 0.00 0.06 0.98 0.24 0.01 0.06 0.94 0.24
100 G-prior -0.01 0.07 0.96 0.28 0.01 0.06 0.95 0.24

CASE 3: Time-varying parameters with changing sign of the effects
30 info 0.04 0.16 0.94 0.59 -0.04 0.10 0.92 0.36
30 G-prior 0.00 0.16 0.95 0.60 -0.01 0.10 0.95 0.39
50 info 0.03 0.13 0.94 0.48 -0.03 0.08 0.94 0.29
50 G-prior 0.00 0.14 0.94 0.49 -0.01 0.08 0.95 0.3

100 info 0.00 0.07 0.96 0.30 0.01 0.06 0.96 0.24
100 G-prior 0.00 0.07 0.96 0.30 0.01 0.06 0.96 0.24
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Application in psychology

Xh = AP1

Mh = SEF2

Yh = AP2 = X

M = SEF3

Y = AP3

historical data
actual data

Figure: Structural model. AP: Academic Performance, SEF : Self Efficacy
Feeling.
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Estimation of the regression coefficients
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Estimation of the effects

G-prior info
Estimate Lower Upper Estimate Lower Upper

PNIE 0.094 -0.014 0.211 0.114 0.016 0.222
TNIE 0.056 -0.011 0.140 0.058 0.003 0.128

PNDE 0.473 0.277 0.664 0.497 0.296 0.696
TNDE 0.434 0.245 0.634 0.441 0.241 0.646

Table: 95 %-Credible Interval for the effects at the second time measurement
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Conclusion

1 Bayesian estimation of the direct and indirect effects:
the posterior distribution of both effects can be calculated

2 Procedure to include information coming from historical study
Improvement of the precision and the accuracy

3 Testing procedure for the effects
Improvement of the significance level and the power comparing to
bootstrap approximation
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