Priors comparison in Bayesian mediation framework with binary outcome

Jean-Michel Galharret & Anne Philippe

Université de Nantes- Laboratoire de mathématiques Jean Leray

September 13, 2021

Image: A math a math

Mediation

- outcome variable Y.
 exposure variable X.
- mediator variable M.

- The purpose is to decompose the causal effect of X on Y into two parts
 - The effect that passes through the mediator $M (\rightarrow \text{ indirect effect})$
 - The effect that does not (→→ direct effect).

Motivation of my works

- Practical issues in psychology.
- Propose alternative statistical solutions: \rightsquigarrow Bayesian framework

< □ > < □ > < □ > < □ > < □ >

Gaussian model: case of correlation

• The most widely model to evaluate the effect of X on Y is the linear regression:

$$Y = \psi_0 + \psi X + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- ψ measures the association between X and Y.
- In presence of the mediator M,
 - the linear model is of the form:

$$Y = b_0 + b_1 M + b_2 X + \varepsilon_2 \implies Y = b_0 + b_1 a_0 + (a_1 b_1 + b_2) X + a_1 \varepsilon_1 + \varepsilon_2$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), i = 1, 2.$
• The total effect is
$$\psi = \underbrace{b_2}_{\text{Direct}} + \underbrace{a_1 b_1}_{\text{Indirect}}.$$

• • • • • • • • • •

Mediation with binary outcome

Problem: Decomposition of the effect of *X* on *Y* in the logistic case.

• • • • • • • • • • • •

The decomposition of the total effect is not valid for logistic mediation model.

• ψ measures the total effet

$$\mathbb{E}(Y|X) = rac{1}{1 + e^{-(\psi_0 + \psi X)}}$$
 (*)

• b₂ measures the direct effect

$$\mathbb{E}(Y|X,M) = rac{1}{1 + e^{-(b_0 + b_1 M + b_2 X)}}$$
 (**)

But

$$\psi \neq b_2 + a_1 b_1$$

If we replace M by $M = a_0 + a_1 X + \varepsilon$ in (**), we do not obtain (*)

イロト イヨト イヨト

Causal Effect

- We want to define the causal effect of the exposure $X \in \{0, 1\}$ on the outcome Y.
- Y_x is the potential outcome if X = x, $x \in \{0, 1\}$.
- The average causal effect of X on Y is

$$ACE = \mathbb{E}(Y_1 - Y_0)$$

Theorem

Assume that

if
$$X = x$$
, then $Y_x = Y$,

ignorability assumption,

$$Y_x \perp X$$
 for $x \in \{0,1\}$,

We have

$$ACE = \mathbb{E}(Y|X=1) - \mathbb{E}(Y|X=0)$$

J-M Galharret

In presence of a mediator Pearl (2001)

Direct effect is the difference between the potential outcomes Y₁ and Y₀ but imagining that the mediator is blocked at its value M_x

• Pure Natural Direct Effect when x = 0,

$$NDE(0) = \mathbb{E}(Y_{1,M_0} - Y_{0,M_0})$$

2 Total Natural Direct Effect, when x = 1,

$$NDE(1) = \mathbb{E}(Y_{1,M_1} - Y_{0,M_1})$$

Indirect effect is the difference between the potential outcome Y_x but imagining that the mediator corresponds to M_1 and to M_0

• Pure Natural Indirect Effect when x = 0,

$$NIE(0) = \mathbb{E}(Y_{0,M_1} - Y_{0,M_0})$$

2 Total Natural Indirect Effect, when x = 1,

$$\mathsf{NIE}(1) = \mathbb{E}(Y_{1,M_1} - Y_{1,M_0})$$

A simple calculation provides

$$ACE = PNDE + TNIE = PNIE + TNDE$$

イロト イヨト イヨト

Identifiability of NDE and NIE

- The potential outcome $Y_{x,M_{x^*}}$ is never observed since $x \neq x^*$.
- Additional assumptions are required to obtain the identifiability of the effects (see for instance Pearl, 2001; Imai et al., 2010).
- Under these, we have, for $x, x^* \in \{0, 1\}$,

$$\mathbb{E}(Y_{x,M_{x^*}}) = \int_{-\infty}^{+\infty} \mathbb{E}(Y|X=x,M=m) f_{M|X=x^*}(m) dm$$

 $\sim \rightarrow$

$$\begin{aligned} \mathsf{NDE}(\mathsf{x}) &= \int \left[\mathbb{E}(\mathsf{Y}|\mathsf{X}=1,\mathsf{M}=m) - \mathbb{E}(\mathsf{Y}|\mathsf{X}=0,\mathsf{M}=m) \right] \mathrm{d}\mathbb{P}_{\mathsf{M}|\mathsf{X}=\mathsf{x}}(m) \\ \mathsf{NIE}(\mathsf{x}) &= \int \mathbb{E}(\mathsf{Y}|\mathsf{X}=\mathsf{x},\mathsf{M}=m) \mathrm{d}\mathbb{P}_{\mathsf{M}|\mathsf{X}=1}(m) - \int \mathbb{E}(\mathsf{Y}|\mathsf{X}=\mathsf{x},\mathsf{M}=m) \mathrm{d}\mathbb{P}_{\mathsf{M}|\mathsf{X}=0}(m) \end{aligned}$$

Gaussian example:

 $NDE(0) = NDE(1) = b_2$, $NIE(0) = NIE(1) = a_1b_1$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Bayesian inference of effects NDE(x) et NIE(x)

$$\begin{cases} M = a_0 + a_1 X + \varepsilon & \alpha = (a_0, a_1) \\ \mathbb{E}(Y|X, M) = \frac{1}{1 + e^{-(b_0 + b_1 M + b_2 X)}} & \beta = (b_0, b_1, b_2) \end{cases}$$

• Likelihood function : $f(Y, M|\alpha, \beta, \sigma^2, X) = \Phi_1(Y|\beta, M, X)\Phi_2(M|\alpha, \sigma^2, X)$

where
$$\begin{cases} \Phi_1(Y|\beta, M, X) = \frac{\exp(Y(b_0 + b_1M + b_2X))}{1 + \exp(b_0 + b_1M + B_2X)} \\ \Phi_2 \text{ Gaussian } \mathcal{N}(a_0 + a_1X, \sigma^2 I_n) \end{cases}$$

- prior distribution of α, β, σ^2 .
- parameters of Interest:

$$\begin{aligned} \mathsf{NDE}_{\theta}(x) &= \frac{1}{\sigma\sqrt{2\pi}} \int \left[\frac{1}{1 + e^{-(\beta_0 + \beta_1 m + \beta_2)}} - \frac{1}{1 + e^{-(\beta_0 + \beta_1 m)}} \right] e^{-\frac{1}{2\sigma^2}(m - \alpha_0 - \alpha_1 x)^2} \mathrm{d}m \\ \mathsf{NIE}_{\theta}(x) &= \frac{1}{\sigma\sqrt{2\pi}} \int \frac{1}{1 + e^{-(\beta_0 + \beta_1 m + \beta_2 x)}} \left[e^{-\frac{1}{2\sigma^2}(m - \alpha_0 - \alpha_1)^2} - e^{-\frac{1}{2\sigma^2}(m - \alpha_0)^2} \right] \mathrm{d}m. \end{aligned}$$

 \rightsquigarrow Non-explicit function of θ

イロト イヨト イヨト イヨト

We propose strategies with different degrees of information :

- a weakly G-prior introduced by Zellner (1971).
- an informative prior resulting from Launay et al. (2015) transfer Learning

		linear regression		Logistic regression	
		σ^2	α	β	
G-prior	weakly info.	1 1 G-prior			
Informative	info.	$\overline{\sigma^2} {}^{\mathrm{I\!I}} \mathbb{R}^+$	Launay et al. (2015)		

(日) (四) (日) (日) (日)

G-priors

• For linear regression model (Zellner, 1971)

$$Y = \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_n), \mathbf{X} = [\mathbb{1}, X_1, ..., X_p].$$

G-prior is define as follows

$$\begin{cases} \beta | \sigma^2, \mathbf{X} \sim \mathcal{N}_{p+1} \left(\widetilde{\beta}, g \sigma^2 (\mathbf{X}' \mathbf{X})^{-1} \right) \\ \pi(\sigma^2 | \mathbf{X}) \propto \sigma^{-2} \end{cases}$$

- → The choice $\tilde{\beta} = 0$ and g = n gives to prior information the same weight as an observation.
- Generalisation to logistic regression (Marin and Robert, 2007)

$$eta | \mathbf{X} \sim \mathcal{N}_{p+1}\left(\widetilde{eta}, g(\mathbf{X}' W \mathbf{X})^{-1}
ight), \quad W = diag(p_i(1-p_i)).$$

 \rightsquigarrow The choice $\tilde{\beta} = 0$ and $p_i = 1/2$ gives a weak information to the prior.

A D F A B F A B F A B

G-priors and mediation model

• Decomposition of the joint distribution :

$$\begin{split} f(M, Y, \alpha, \sigma^2, \beta | X) = & \Phi_1(Y | \beta, \sigma_Y^2, X, M) \pi(\beta, \sigma_Y^2 | X, M) \\ & \Phi_2(M | \alpha, \sigma_M^2, X) \pi(\alpha, \sigma^2 | X). \end{split}$$

- $\pi(\beta|X, M)$ *G*-prior logistic regression $\mathbb{E}(Y|X, M) = \frac{1}{1+e^{-(b_0+b_1M+b_2X)}}$
- $\pi(\alpha, \sigma^2 | X)$ *G*-prior linear regression $M = a_0 + a_1 X + \varepsilon_M.$

Remark on the Gaussian mediation model

- Galharret and Philippe (2021) use the same strategy for the Gaussian mediation model.
- Nuijten et al. (2015) address this problem as two independent Gaussian regression models.

< □ > < □ > < □ > < □ > < □ >

Proposition

In the mediation model we have:

$$NDE(0) = 0 \iff NDE(1) = 0 \iff b_2 = 0$$
$$NIE(0) = 0 \iff NIE(1) = 0 \iff a_1b_1 = 0$$

Test for direct effect $(b_2 = 0)$ the likelihood ratio test

Test for indirect effect ($a_1b_1 = 0$ **)** bootstrap is used to approximate confidence interval for $a_1b_1 \rightsquigarrow$ the performances are not very good for small samples.

< □ > < □ > < □ > < □ > < □ >

Test for the indirect effect :

 \mathcal{H}_0 : NIE_{θ}(x) = 0 against \mathcal{H}_1 : NIE_{θ}(x) \neq 0.

Decision rule : let \mathcal{I}_{α} be the credible interval of NIE_{θ}(x)

 $P(NIE_{\theta}(x) \in \mathcal{I}_{\alpha}|Y, M) = 1 - \alpha$

 $0 \notin \mathcal{I}_{\alpha} \rightsquigarrow$ The absence of indirect effect is rejected

Remark

• According to Berstein von Mises theorem, for all $\theta \in \Theta$ such as $a_1b_1 = 0$, the frequentist probability satisfies

$$P_{\theta}(\mathbf{0} \in \mathcal{I}_{\alpha}) \to \alpha$$

E nar

イロト イヨト イヨト イヨト

Numerical results for indirect effect

 $a_1 h_1$

Mediation with binary outcome

Informative model M_1 (Launay et al., 2015)

We assume that

J-M Galharret

- $\bullet A historical data are available <math>\mathcal{D}_h$ and
- **2** A Bayesian analysis has been done on \mathcal{D}_h

 $m_h = \mathbb{E} (\alpha_h, \beta_h | \mathcal{D}_h)$ $\Sigma_h = \mathbb{V}ar (\alpha_h, \beta_h | \mathcal{D}_h)$

Application: longitudinal study: historical data come from the previous time step.

Assumption: Only small changes in parameters between the two studies. Prior distribution of (α, β) :

$$(\alpha, \beta) \sim \mathcal{N}_{5}(Km_{h}, g\Sigma_{h})$$
where $K = \begin{pmatrix} k_{1} \\ \ddots \\ k_{J} \end{pmatrix}$ et $k_{1}, ..., k_{J}$ are i.i.d. $k_{j} \sim \mathcal{N}(1, \tau^{2})$.
 $\Rightarrow g$ et τ^{2} hyperparameters of the model.

Mediation with binary outcome

September 13, 2021

16 / 24

Historical data : $n_h = 100$, $\alpha_h = (1, -2)$ et $\beta_h = (-0.5, 1.5, 1)$.

data : We simulate samples with the following parameters

	α	β	NDE(0)	NIE(1)
Case 1	(1, -2)	(-0.5, 1, 1.5)	0.24	-0.35
Case 2	(1, -1)	(-1, 2, 0.5)	0.07	-0.29
Case 3	(1, 1)	(1,1,-1)	-0.15	0.15

< □ > < □ > < □ > < □ > < □ >

• • • • • • • • • •

			NDE(0)=PNDE			NIE(1)=TNIE			
N	model	bias	RMSE	coverage	length	bias	RMSE	coverage	length
CASE 1: Time-invariant parameters									
30	info	0.01	0.11	0.97	0.48	0.01	0.11	0.96	0.43
30	G-prior	-0.02	0.16	0.96	0.63	0.04	0.12	0.95	0.48
50	info	0.00	0.09	0.96	0.40	0.01	0.08	0.96	0.34
50	G-prior	-0.01	0.12	0.95	0.49	0.02	0.09	0.96	0.37
100	info	0.00	0.07	0.96	0.30	0.01	0.06	0.96	0.24
100	G-prior	0.00	0.07	0.96	0.30	0.01	0.06	0.96	0.24
CASE 2: Time-varying parameters with invariance of the sign of the effects									
30	info	0.03	0.09	0.97	0.39	0.02	0.10	0.96	0.40
30	G-prior	0.00	0.13	0.93	0.50	0.02	0.11	0.96	0.43
50	info	0.02	0.07	0.97	0.32	0.01	0.08	0.96	0.33
50	G-prior	0.00	0.10	0.94	0.40	0.02	0.08	0.96	0.34
100	info	0.00	0.06	0.98	0.24	0.01	0.06	0.94	0.24
100	G-prior	-0.01	0.07	0.96	0.28	0.01	0.06	0.95	0.24
CASE 3: Time-varying parameters with changing sign of the effects									
30	info	0.04	0.16	0.94	0.59	-0.04	0.10	0.92	0.36
30	G-prior	0.00	0.16	0.95	0.60	-0.01	0.10	0.95	0.39
50	info	0.03	0.13	0.94	0.48	-0.03	0.08	0.94	0.29
50	G-prior	0.00	0.14	0.94	0.49	-0.01	0.08	0.95	0.3
100	info	0.00	0.07	0.96	0.30	0.01	0.06	0.96	0.24
100	G-prior	0.00	0.07	0.96	0.30	0.01	0.06	0.96	0.24

2

メロト メタト メヨト メヨト

Figure: Structural model. *AP*: Academic Performance, *SEF*: Self Efficacy Feeling.

イロト イヨト イヨト イヨト

Estimation of the regression coefficients

イロト イロト イヨト

		G-prior		info		
	Estimate	Lower	Upper	Estimate	Lower	Upper
PNIE	0.094	-0.014	0.211	0.114	0.016	0.222
TNIE	0.056	-0.011	0.140	0.058	0.003	0.128
PNDE	0.473	0.277	0.664	0.497	0.296	0.696
TNDE	0.434	0.245	0.634	0.441	0.241	0.646

Table: 95 %-Credible Interval for the effects at the second time measurement

・ロト ・回ト ・ヨト・

- Bayesian estimation of the direct and indirect effects: the posterior distribution of both effects can be calculated
- Procedure to include information coming from historical study Improvement of the precision and the accuracy
- Testing procedure for the effects Improvement of the significance level and the power comparing to bootstrap approximation

(日) (四) (日) (日) (日)

Bibliography

- Galharret, J.-M. and Philippe, A. (2021). Bayesian analysis for mediation and moderation using g-priors. working paper or preprint.
- Imai, K., Keele, L., and Tingley, D. (2010). A general approach to causal mediation analysis. *Psychological Methods*, 15(4):309–334.
- Launay, T., Philippe, A., and Lamarche, S. (2015). Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting. *TEST*, 24(2):361–385.
- Marin, J.-M. and Robert, C.-P. (2007). *Bayesian core: a practical approach to computational Bayesian statistics*. Springer Texts in Statistics. Springer, 1st edition.
- Nuijten, M. B., Wetzels, R., Matzke, D., Dolan, C. V., and Wagenmakers, E. M. (2015). A default bayesian hypothesis test for mediation. *Behavior Research Methods*, 47:85–97.
- Pearl, J. (2001). Direct and indirect effects. In *Proceedings of the* Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI'01, pages 411–420, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Zellner, A. (1971). An Introduction to Bayesian Inference in

J-M Galharret