Equations structurelles avec PLS-SEM

Véronique Cariou

Statistics, Sensometrics and Chemometrics Unit Oniris, INRAE, Nantes, France

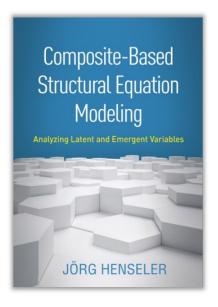
Outline

- 1 Syllabus
- 2 Composite-based
- 3 Composite models
- 4 Estimation
- 5 Application

Plan du cours

- CH I : Composite-based methods
 - Définition des méthodes dites variance-based
 - Comment distinguer les deux approches?
 - PLS-SEM et l'approche de Wold
- CH II : Composite models
 - Quel construit cherche t'on à modéliser?
 - Variable émergente
- CH III : Estimation du modèle
 - PLS-SEM pour les modèles composites
 - PLSc pour les modèles common-factor
- CH IV : Application
 - RedLosses

Ressource



Ressource: Henseler, J. (2020). Composite-based structural equation modeling: Analyzing latent and emergent variables. Guilford Publications.

Outline

- 1 Syllabus
- 2 Composite-based
- 3 Composite models
- 4 Estimation
- 5 Application

Méthodes SEM

SEM comme une collection de méthodes statistiques "that allow a set of relationships between one or more independent variables (IVs), either continuous or discrete, and one or more dependent variables (DVs), either continuous or discrete, to be examined" Ullman & Bentler (2003)

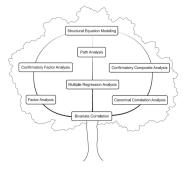


Figure – Famille des méthodes SEM Henseler (2020)

Théorie sous-jacente

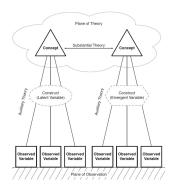


Figure – Construits Henseler (2020)

- Variables latentes : modélisées comme des facteurs communs sous-jacents à un ensemble de variables observées.
- Variables émergentes : modélisées comme des composites de variables observées.

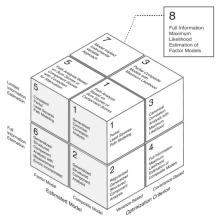
Construits : variables statistiques non directement observables mais pouvant être déduites des variables observables.

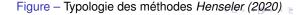
 Illabus
 Composite-based
 Composite models
 Estimation
 Application

 00
 0000000
 0000000000
 0000000000
 0000000000

Méthodes composite-based

"Composite-based SEM are those SEM techniques that involve composites in the estimation phase." (Henseler, 2020, p. 11)





Méthodes composite-based vs variance-based

Méthodes variance-based (composite-based) vs covariance-based (Jöreskog, 1978; Rigdon, 1998) :

- covariance-based : minimise l'écart entre la matrice de variance-covariance empirique et celle impliquée par le modèle
- variance-based : maximise un certain critère d'interdépendance entre les proxies représentant les variables non observées et s'exprimant sous la forme de combinaisons linéaires des variables observées

PLS-SEM

CSA

K. Jöreskog (1973)

GSCA

H. Hwang & Y. Takane (2004, 2014)

PLS

H. Wold (1966, 1975) S. Wold & al. (1984)

- En 1975, H. Wold étend l'algorithme itératif NIPALS à une procédure plus générale pour l'estimation de relations entre plusieurs blocs de variables.
- Cette "soft" modélisation évite les hypothèses restrictives qui sous-tendent les techniques du maximum de vraisemblance.

Débats autour de PLS-SEM et dévelopements

Des critiques autour de :

- incohérence des paramètres dans le cas des modèles réflectifs
- manque de mesures d'adéquation
- limite pour la validité discriminante (Rönkkö & Evermann, 2013).

Et des développements contribuant à un enrichissement mutuel :

- clarification des théories auxilliaires
- correction pour l'atténuation (PLS cohérent; voir Dijkstra & Henseler, 2015)
- tests basés sur le bootstrap de ajustement du modèle (voir Dijkstra & Henseler, 2015)

Package cSEM et SEMinR

- cSEM package (Rademaker): M. E., Schuberth, F., Schamberger, T., Klesel, M., Dijkstra, T. K., & Henseler, J. (2020). R package cSEM: Composite-based structural equation modeling version 0.3.0.
- SEMinR package (Ray & Danks); Hair, J. F., Hult, G. T., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature.

Chuah, F., Memon, M. A., Ramayah, T., Cheah, J. H., Ting, H., & Cham, T. H. (2021). PLS-SEM using R: An introduction to csem and SEMinR. Journal of the problem of the prob

Outline

- 1 Syllabus
- 2 Composite-based
- 3 Composite models
- 4 Estimation
- 5 Application

Modéliser un construit/concept

Dans le cadre des modèles common-factors, les étapes sont :

- une variable latente associée au concept théorique (réduction de la dimensionnalité),
- 2 le facteur représentant le concept théorique se comporte-t-il comme une variable latente (indépendance conditionnelle)?
- 3 la variable latente dérivée empiriquement couvre-t-elle suffisamment la signification du concept théorique?

Modéliser un construit/concept

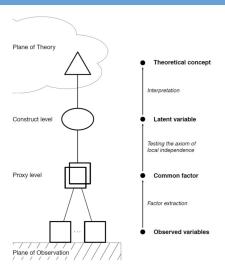


Figure – Théorie de la mesure - Henseler (2020)

Quel type de construit/concept?

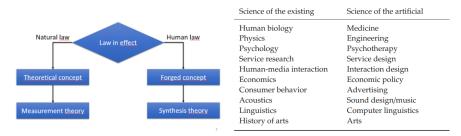


Figure – Théorie de la mesure vs synthèse

Un concept émergent nécessite de le développer et de l'évaluer et non de le mesurer.

Modéliser un concept émergent

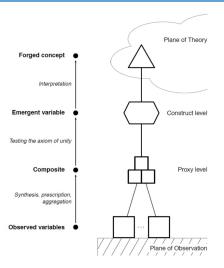


Figure – Variable émergente - Henseler (2020)

Variable émergente et modèle composite

Dans le cas des modèles composites, les indicateurs forment le construit comme combinaison linéaire (avec la prise en compte de poids) sans erreur (Dijkstra, 2017; Henseler, 2020). Les relations entre poids et composites sont les suivantes :

$$egin{aligned} \xi &= \mathsf{XW}_{\mathsf{X}} \ \eta &= \mathsf{YW}_{\mathsf{Y}} \end{aligned}$$

avec:

$$\mathbf{W}_{\mathbf{X}} = \begin{pmatrix} \mathbf{w}_{1}^{(\mathbf{X})} & 0 & \dots & 0 \\ 0 & \mathbf{w}_{2}^{(\mathbf{X})} & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \mathbf{w}_{\rho}^{(\mathbf{X})} \end{pmatrix}, \ \mathbf{W}_{\mathbf{Y}} = \begin{pmatrix} \mathbf{w}_{1}^{(\mathbf{Y})} & 0 & \dots & 0 \\ 0 & \mathbf{w}_{2}^{(\mathbf{Y})} & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \mathbf{w}_{q}^{(\mathbf{Y})} \end{pmatrix}.$$

Modèle composite

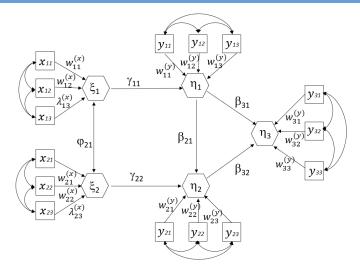


Figure – Exemple de modèle composite

Eléments de SEM

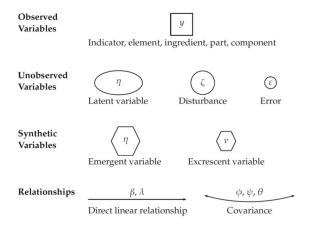
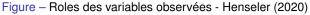


Figure - Variables et paramètres de SEM - Henseler (2020)

Spécificités des trois types de modèle

Characteristic	Component	Effect indicator	Cause indicator
Observed variable's role	Ingredient, part, element	Consequence	Antecedent, cause
Corresponding construct	Emergent variable	Latent variable	Latent variable
Correlations among observed variables	High correlations are common, but not required	High correlations are expected	No reason to expect the measures are correlated
Proneness to measurement error	Can contain measurement error	Contains measurement error	Can contain measurement error
Informative about measurement error	Not informative about measurement error	Jointly informative about measurement error	Not informative about measurement error
Consequences of dropping an indicator	Dropping an indicator alters the construct and may change its meaning	Dropping an indicator does not alter the meaning of the construct	Dropping an indicator increases the error on construct level



Modèle sur la stabilité politique avec 47 pays et 3 blocs de variables - Russett (1964)

- Indicateurs des inégalités agricoles :
 - gini : indice de concentration Gini
 - farm : pourcentage de propriétaires fonciers qui occupent collectivement la moitié de toutes les terres agricoles
 - rent : pourcentage du nombre total d'exploitations agricoles qui louent toutes leur terre $_{\text{en In }(x+1)}$
- Indicateurs de développement industriel :
 - gnpr: produit national brut par habitant de 1955 en \$ In (x)
 - labo : pourcentage de la population active dans l'agriculture ln (x)
- Indicateurs de stabilité politique :
 - inst : instabilité du personnel selon la durée du mandat exp (x 16,3)
 - ecks : nombre total d'incidents politiques violents In (x + 1)
 - deat : nombre de personnes tuées à la suite d'attaques internes pour 1 000 000 d'habitants, ln (x + 1)
 - stab : 1 si le pays a une démocratie stable, 0 sinon
 - dict: 1 si dictature, 0 sinon. sinon.

Script R

```
#devtools::install_qithub("M-E-Rademaker/cSEM")
library(readx1)
library(csem) # autres packages SEMinR, cbsem, plspm
setwd(setwd("~/Publication/2024/Chimiométrie/Cours/R"))
Russett <- as.data.frame(readxl::read excel("Russett.xlsx"))
# Model specification
# =~ specify reflective measurement models; it assigns observed variables to a latent variable.
# <~ specify composite models; it assigns observed variables to an emergent variable.
# ~ specify the inner model: it defines on which independent variables a construct shall be regressed
# -- specify correlations among measurement errors within a block of indicators.
model_Russett = ' # Specify the composite models
AgrIneg <~ gini + farm + rent
IndDev <~ gnpr + labo
PolInst <~ inst + ecks + deat + stab + dict
# Specify the relation among the emergent variables
PolInst ~ AgrIneg + IndDev
out <- csem(.data = Russett, .model = model_Russett,
            .PLS_weight_scheme_inner = 'factorial', #see estimation
            .tolerance = 1e-06
summarize(out)
```

Outputs (1)

```
----- Overview ------
General information:
Estimation status
                                = 0k
Number of observations
                                = 47
Weight estimator
                                = PLS-PM
Inner weighting scheme
                                = "factorial"
Type of indicator correlation
                                = Pearson
Path model estimator
                                = 01.5
Second-order approach
                                 = NA
Type of path model
                                 = Linear
Disattenuated
                                 = No
Construct details:
Name Modeled as
                      order
                                   Mode
AgrIneq Composite
                      First order
                                   "modeB"
IndDev
        Composite
                      First order
                                   "modeB"
PolInst Composite
                      First order
                                   "modeB"
```

_____ Estimates ____

----- Estimates -----

t-stat.

NA

p-value

NA

NA

NA

NA

NA

NA

NA

NA

NA

Outputs (2)

Path Estimate Std. error p-value t-stat. Polinst ~ Agrineg 0.3379 NA NA NA PolInst ~ IndDev 0.5926 NA NA NA Estimated loadings: ----t-stat. p-value Loading Estimate Std. error AgrIneg =~ gini 0.5365 NA NA NA AgrIneq =~ farm 0.6715 NA NA NA -0.2644 NA AgrIneg =~ rent NA IndDev =~ gnpr -0.9094NA NA IndDev =~ labo 0.9824 NA NA PolInst =~ inst 0.1923 NA NA PolInst =~ ecks 0.6310 NA NA NA PolInst =~ deat 0.5240 NA NA PolInst =~ stab -0.9685 NA NA NA PolInst =~ dict 0.7395

Estimate Std. error

-1.0570

2.0241

-0.7859

-0.3228

0.7191

0.1287

-0.1337

-0.0854

-0.8337

0.2459

Estimated path coefficients:

AgrIneq <~ gini

AdrIned <~ farm

AgrIneq <~ rent

IndDev <~ gnpr

IndDev <~ labo

Polinst <~ inst

Polinst <~ ecks

PolInst <~ deat

PolInst <~ stab

PolInst <~ dict

Outputs (3)

Estimated construct correlations:

Correlation Estimate Std. error t-stat. p-value
AgrIneq ~~ IndDev 0.4875 NA NA NA

Estimated indicator correlations:

Correlation	Estimate	Std. error	t-stat.	p-value
gini ~~ farm	0.9376	NA	NA	NA
gini ~~ rent	0.3873	NA	NA	NA
farm ~~ rent	0.4599	NA	NA	NA
gnpr ~~ labo	-0.8156	NA	NA	NA
inst ~~ ecks	0.3261	NA	NA	NA
inst ~~ deat	0.0835	NA	NA	NA
inst ~~ stab	-0.3434	NA	NA	NA
inst ~~ dict	0.0198	NA	NA	NA
ecks ~~ deat	0.6277	NA	NA	NA
ecks ~~ stab	-0.6034	NA	NA	NA
ecks ~~ dict	0.3920	NA	NA	NA
deat ~~ stab	-0.4905	NA	NA	NA
deat ~~ dict	0.5321	NA	NA	NA
stah dict	-0 5893	NΔ	NΔ	NΑ

----- Effects -----

Estimated total effects:

Total effect	Estimate	Std.	error	t-stat.	p-value
Polinst ~ Agrineq	0.3379		NA	NA	NA
PolInst ~ IndDev	0.5926		NA	NA	NA

-

Outline

- 1 Syllabus
- 2 Composite-based
- 3 Composite models
- 4 Estimation
- 5 Application

PLS-SEM pour modèles composites

Le critère d'optimisation de PLS peut être compris comme une somme pondérée des R^2 du modèle d'équations structurelles.

Les principaux résultats de l'algorithme PLS-SEM sont les proxies z_j , c'est-à-dire les scores obtenus comme combinaisons linéaires des variables observées des blocs respectifs.

La matrice de corrélation impliquée par le modèle interne est alors assimilée à la matrice des corrélations entre les proxies.

L'algorithme PLS peut être vu comme une séquence de régressions en termes de vecteurs de poids (Lohmöller, 1989).

Algorithme PLS-SEM en 4 étapes principales

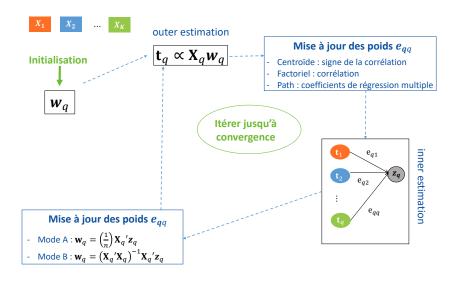
- Calcul des outer weights les poids \mathbf{w}_p sont obtenus par un algorithme itératif alternant le calcul des proxies selon les modèles interne et externe
- calcul des composites les composites sont estimées sur la base des proxies

$$\hat{\boldsymbol{\xi}}_{p} \propto \mathbf{X}_{p} \mathbf{w}_{p}$$

$$\hat{\eta}_{\it q} \propto \mathbf{Y}_{\it q} \mathbf{W}_{\it q}$$

- g estimation des path coefficients Γ et B une séquence de régressions est opérée de manière à estimer les coefficients de régression associés au modèle structurel
- estimation des loadings
 Les loadings sont estimés sur la base des proxies et des poids

Algorithme PLS-SEM



Les variables observées sont supposées standardisées

Etape finale de calcul

Pour chaque variable observée, les loadings peuvent être déterminés comme des corrélations entre elle et le proxy qui lui est associé :

$$\forall j, q \ \lambda_{qj} = cor(\mathbf{z}_q, \mathbf{y}_{qj})$$

Le vecteur de poids \mathbf{w}_q peut être déterminé sur la base de la matrice de corrélation \mathbf{R}_q des variables observées \mathbf{y}_{qj} et des loadings :

$$\forall j, q \ w_{qj} = \mathbf{R}_q^{-1} \lambda_{qj}$$

PLS-SEM pour l'estimation des paramètres d'un modèle common-factor

Correction proposée par Dijskstra dans PLSc (1981) : la corrélation entre deux variables latentes est égale à la corrélation entre leurs scores de construit divisée par la moyenne géométrique de la fiabilité de leurs scores :

$$cor(\eta_p,\eta_q) =
ho_{pq} = rac{cor(\mathbf{z}_p,\mathbf{z}_q)}{\sqrt{
ho_A(\mathbf{z}_p) imes
ho_A(\mathbf{z}_q)}}$$

avec:

$$\rho_{\mathit{A}}(\mathbf{z}_{\mathit{p}}) = (\mathbf{w}_{\mathit{p}}^{\top}\mathbf{w}_{\mathit{p}})^2 \sqrt{\lambda_{\mathit{p}}^{\top}\Sigma_{\mathit{pp}}\lambda_{\mathit{p}}}$$

Modèle sur la stabilité politique avec 47 pays et 3 blocs de variables - Russett (1964)

- Indicateurs des inégalités agricoles :
 - gini: indice de concentration Gini
 - farm : pourcentage de propriétaires fonciers qui occupent collectivement la moitié de toutes les terres agricoles
 - rent : pourcentage du nombre total d'exploitations agricoles qui louent toutes leur terre en ln (x + 1)
- Indicateurs de développement industriel :
 - gnpr: produit national brut par habitant de 1955 en \$ In (x)
 - labo : pourcentage de la population active dans l'agriculture ln (x)
- Indicateurs de stabilité politique :
 - inst : instabilité du personnel selon la durée du mandat exp (x 16,3)
 - ecks: nombre total d'incidents politiques violents In (x + 1)
 - deat : nombre de personnes tuées à la suite d'attaques internes pour 1 000 000 d'habitants, ln (x + 1)
 - stab : 1 si le pays a une démocratie stable, 0 sinon
 - dict: 1 si dictature, 0 sinon. sinon.

- les modèles de mesure réflectifs des variables latentes sont estimés par PLSc (PLS-SEM mode A puis correction)
- les modèles composites sont estimés par le mode B
- plus généralement, le mode appliqué peut être ajusté avec cinq options pour déterminer les poids : Mode A, Mode B, Mode BNNLS, somme des scores/poids unitaires et poids définis par l'utilisateur.

cSEM sur Russett

- les indicateurs d'inégalités agricoles doivent avoir des poids non négatifs
- les indicateurs de développement industriel sont contraints d'avoir des pondérations égales en valeur absolue mais différentes en signe
- le mode A est appliqué pour l'instabilité politique
- les proxies sont liées sans prise en compte du path diagram
- la qualité du modèle est estimée par bootstrap

Outputs (1)

```
-----Overview ------
      General information:
      Estimation status
                                    = 0k
      Number of observations
                                    = 47
      weight estimator
                                    = PLS-PM
      Inner weighting scheme
                                    = "path"
      Type of indicator correlation
                                    = Pearson
      Path model estimator
                                    = 015
      Second-order approach
                                    = NA
      Type of path model
                                    = Linear
      Disattenuated
                                    = No
      Resample information:
                                    = "bootstrap"
      Resample method
      Number of resamples
                                    = 499
      Number of admissible results
                                    = 499
      Approach to handle inadmissibles
                                    = "drop"
      Sign change option
                                    = "none"
      Random seed
                                    = 774016719
      Construct details:
           Modeled as
      Name
                          order
                                      Mode
                          First order
                                      "modeBNNLS"
      AgrIneg Composite
      IndDev Composite
                          First order
                                      "fixed"
      PolInst Composite
                          First order
                                      "modeA"
     Estimated path coefficients:
_____
                                                        CI percentile
```


Outputs (2)

Estimated loadings:

					C1_percentile					
Loading	Estimate	Std. error	t-stat.	p-value	95%					
AgrIneq =~ gini	0.9376	0.0920	10.1899	0.0000	[0.8402; 1.0000]					
AgrIneq =~ farm	1.0000	0.0857	11.6674	0.0000	[0.8325; 1.0000]					
AgrIneq =~ rent	0.4599	0.1758	2.6156	0.0089	[0.0859; 0.7447]					
IndDev =~ gnpr	0.9528	0.0107	89.0989	0.0000	[0.9305; 0.9708]					
IndDev =~ labo	-0.9528	0.0107	-89.0989	0.0000	[-0.9708; -0.9305]					
PolInst =~ inst	0.3341	0.1546	2.1607	0.0307	[-0.0041; 0.5846]					
PolInst =~ ecks	0.8034	0.0961	8.3573	0.0000	[0.6383; 0.8973]					
PolInst =~ deat	0.7860	0.0835	9.4173	0.0000	[0.6891; 0.8728]					
PolInst =~ stab	-0.8591	0.0897	-9.5749	0.0000	[-0.9234;-0.7313]					
PolInst =~ dict	0.7680	0.0856	8.9685	0.0000	[0.6446; 0.8670]					

Estimated weights:

					CI_percentile
Weight	Estimate	Std. error	t-stat.	p-value	95%
AgrIneq <~ gini	0.0000	0.4869	0.0000	1.0000	[0.0000; 1.0000]
AgrIneq <~ farm	1.0000	0.4930	2.0283	0.0425	[0.0000; 1.0000]
AgrIneq <~ rent	0.0000	0.1640	0.0000	1.0000	[0.0000; 0.4895]
IndDev <~ gnpr	0.5248	0.0059	88.5890	0.0000	[0.5150; 0.5374]
IndDev <~ labo	-0.5248	0.0059	-88.5890	0.0000	[-0.5374; -0.5150]
PolInst <~ inst	0.0989	0.0627	1.5789	0.1144	[-0.0398; 0.2062]
PolInst <~ ecks	0.2690	0.0461	5.8289	0.0000	[0.1874; 0.3489]
PolInst <~ deat	0.2739	0.0426	6.4352	0.0000	[0.2131; 0.3533]
PolInst <~ stab	-0.3448	0.0490	-7.0419	0.0000	[-0.4123; -0.2713]
PolInst <~ dict	0.3116	0.0431	7.2263	0.0000	[0.2492; 0.3774]

CI_percentile

Outputs (3)

Estimated construct correlations:

Correlation

```
-0.3544
                                     0.1460
                                              -2.4278
                                                          0.0152 [-0.5879; -0.0262 ]
 Agrineg -- IndDev
Estimated indicator correlations:
                                                               CI_percentile
  Correlation
                  Estimate Std. error
                                         t-stat.
                                                    p-value
                                                                    95%
  gini ~ farm
                    0.9376
                                0.0160
                                          58.6652
                                                     0.0000 [
                                                              0.9001; 0.9604
  aini ~~ rent
                    0.3873
                                0.1570
                                          2.4670
                                                     0.0136 [ 0.0280: 0.6192
  farm ~~ rent
                    0.4599
                                0.1601
                                           2.8719
                                                     0.0041 [ 0.0924; 0.7059
```

t-stat.

p-value

Estimate Std. error

anpr ~~ labo -0.8156 0.0407 -20.0644 0.0000 [-0.8850:-0.7315 inst ~~ ecks 0.3261 0.0984 3.3133 0.0009 [0.1029; 0.5000 inst ~~ deat 0.5573 [-0.1782; 0.3884 0.0835 0.1423 0.5868 inst ~~ stab -0.34340.0952 -3.60700.0003 [-0.5148; -0.1479 inst -- dict 0.0198 0.1459 0.1354 0.8923 [-0.2723; 0.3021 ecks -- deat 0.6277 0.0629 9.9874 0.0000 [0.5033; 0.7461 ecks -- stab -0.6034 0.1133 -5.3271 0.0000 [-0.7859; -0.3454 ecks -- dict 0.3920 0.1100 3,5648 0.0004 [0.1662; 0.5911 deat ~ stab -0.49050.0761 -6.4445 0.0000 [-0.6322; -0.3358 deat ~~ dict 0.5321 0.1093 4.8671 0.0000 [0.3086: 0.7551 stab ~~ dict -0.58930.0846 -6.9654 0.0000 [-0.7657;-0.4310]

----- Effects

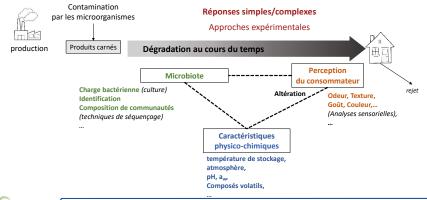
Estimated total effects:

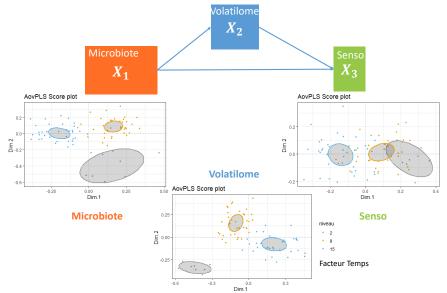
					CI_percentile	
Total effect	Estimate	Std. error	t-stat.	p-value	95%	
PolInst ~ AgrIneq	0.2064	0.1067	1.9355	0.0529	[-0.0096; 0.4355]
PolInst ~ IndDev	-0.6960	0.1014	-6.8648	0.0000	[-0.8520; -0.5330	J

Outline

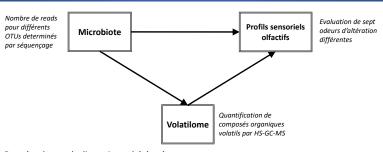
- 1 Syllabus
- 2 Composite-based
- 3 Composite models
- 4 Estimation
- 5 Application

Suivi des caractéristiques de la viande





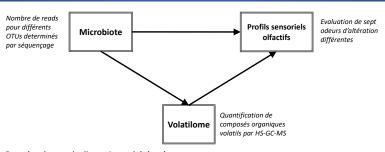
Intégration de données : données utilisées et hypothèse



- Données de grande dimension et hétérogènes,
- · Liens orientés a priori à tester,
- Prétraitements de données nécessaires dans chaque bloc,
- Intégration de données par l'approche Path-ComDim (Cariou et al. 2018)

34

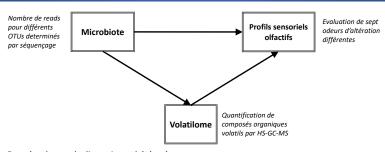
Intégration de données : données utilisées et hypothèse



- Données de grande dimension et hétérogènes,
- · Liens orientés a priori à tester,
- · Prétraitements de données nécessaires dans chaque bloc,
- Intégration de données par l'approche Path-ComDim (Cariou et al. 2018)

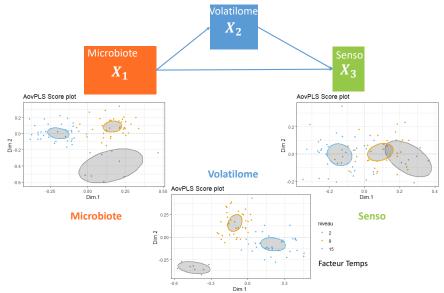
34

Intégration de données : données utilisées et hypothèse



- Données de grande dimension et hétérogènes,
- · Liens orientés a priori à tester,
- · Prétraitements de données nécessaires dans chaque bloc,
- Intégration de données par l'approche Path-ComDim (Cariou et al. 2018)

34



VetAgroBio Nantes


```
model_RedLosses = ' # Specify the composite models
Met <~ Brochothrix_thermosphacta + Latilactobacillus_curvatus + Latilactobacillus_fuchuensis
       + Paucilactobacillus_oligofermentans + Secundilactobacillus_malefermentans + Psychrobacter_cibarius
       Psychrobacter_submarinus + Photobacterium_iliopiscarium + Photobacterium_phosphoreum
Volat <~ VEthanol + V1 propanol + VAcetoin + VEthvl acetate + VDiacetvl +V2 butanone
Senso <- Global_odour_of_rotten_meat + Pungunt_Sour + Ethereal_Fermented_fruit + Fermented_meat_0ld_dry_sausage_like_odour
# Specify the relation among the emergent variables
Volat ~ Met
Senso ~ Met + Volat
out <- csem(.data = df. .model = model RedLosses.
            .PLS_weight_scheme_inner = 'factorial', #see estimation
            .tolerance = 1e-06.
            .resample method='bootstrap'
                                                                       ----- Overview ------
                                                                            General information:
                                                                            Estimation status
                                                                            Number of observations
                                                                                                   = 80
                                                                            weight estimator
                                                                                                   = PLS-PM
                                                                            Inner weighting scheme
                                                                                                   = "factorial"
                                                                            Type of indicator correlation
                                                                                                   = Pearson
                                                                            Path model estimator
```

pisattenuated = NO Resample information: Resample method = "bootstrap" Number of resamples = 499 Number of admissible results = 465 Approach to handle inadmissibles = "drop" - "none" Sign change option Random seed = 134659653Construct details: Name Modeled as order Mode Net Composite First order "mode8" Volat Composite First order "modeB" Senso Composite First order "modes"

Second-order approach

Type of path model

VetAgroBio Nantes

= NA

= Linear

Estimated path coefficients:

CI_percentile Path Estimate Std. error p-value 95% t-stat. volat ~ Met 0.7324 0.2513 2.9141 0.0036 [0.0492; 0.8519] 0.2505 0.1548 1.6181 0.1056 [-0.0917: 0.5313] Senso ~ Met 0.0000 [0.3013: 0.7514] Senso ~ Volat 0.5551 0.1166 4.7618

Estimated loadings:

_	_	-		•	-	-	_	-			_	_	-			2	_	•
=	=	=	=	=	=	=	=	=	=	_	=	=	_	=	=	_	=	_

					CI_percer	ntile	
Loading	Estimate	Std. error	t-stat.	p-value	95%		
Met =~ Brochothrix_thermosphacta	-0.1803	0.1842	-0.9792	0.3275	[-0.4903; 0.	.2311]	
Met =~ Latilactobacillus_curvatus	-0.1447	0.1963	-0.7370	0.4611	[-0.4883; 0.	.2839]	
Met =~ Latilactobacillus_fuchuensis	-0.5027	0.2538	-1.9806	0.0476	[-0.7871; 0.	.2628]	
Met =~ Paucilactobacillus_oligofermentans	-0.5831	0.2329	-2.5040	0.0123	[-0.7607; 0.	.0972]	
Met =~ Secundilactobacillus_malefermentans	0.5198	0.1838	2.8277	0.0047	[-0.1092; 0.	.6700]	
Met =~ Psychrobacter_cibarius	0.6774	0.2093	3.2361	0.0012	[0.0093; 0.	.8066]	
Met =~ Psychrobacter_submarinus	0.5431	0.1809	3.0031	0.0027	[-0.0330; 0.	.7131]	
Met =~ Photobacterium_iliopiscarium	0.2302	0.1471	1.5645	0.1177	[-0.1062; 0.	.5029]	
Met =~ Photobacterium_phosphoreum	0.2853	0.1891	1.5086	0.1314	[-0.2166; 0.	.5804]	
Volat =~ VEthanol	0.5881	0.1967	2.9901	0.0028	[0.0926; 0.	.8627]	
Volat =~ V1_propanol	0.7809	0.0963	8.1093	0.0000	[0.5356; 0.	.9040]	
volat =~ vAcetoin	0.3664	0.1887	1.9415	0.0522	[-0.1011; 0.	.6781]	
Volat =~ VEthyl_acetate	0.5417	0.1538	3.5225	0.0004	[0.1884; 0.	.7689]	
Volat =~ VDiacetyl	0.2921	0.1935	1.5089	0.1313	[-0.1794; 0.	.6192]	
Volat =~ V2_butanone	0.7507	0.1116	6.7295	0.0000	[0.4291; 0.	.8832]	
Senso =~ Global_odour_of_rotten_meat	0.9847	0.0489	20.1197	0.0000	[0.8164; 0.	.9973]	
Senso =~ Pungunt_Sour	0.8924	0.0898	9.9322	0.0000	[0.6096; 0.	.9768]	
Senso =~ Ethereal_Fermented_fruit	0.8041	0.0723	11.1142	0.0000	[0.6204; 0.	.9110]	
Senso =~ Fermented_meat_Old_drv_sausage_like_odour	0.7358	0.1340	5.4911	0.0000	Γ 0.4227: O.	. 9111]	

 Composite-based
 Composite models
 Estimation
 Application

 00000000
 0000000000
 0000000000
 0000000000


```
----- Effects
```

Estimated total effects:

CI_percentile Total effect Estimate Std. error t-stat. p-value 95% Volat ~ Met 0.7324 0.2513 2.9141 0.0036 [0.0492; 0.8519] Senso ~ Met 0.6570 0.2360 2.7844 0.0054 [0.0455; 0.8183] Senso ~ Volat 0.5551 0.11664.7618 0.0000 [0.3013; 0.7514]

Estimated indirect effects:

Indirect effect	Estimate	Std. error	t-stat.	p-value	95%				
Senso ~ Met	0.4065	0.1627	2.4985	0.0125	[-0.0080; 0.5973]			

R2 estimé : Volat 53% Senso 57%

CT percentile